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1 Soil preparation and climate

The soil parental matter was clay with a carbon content of app. 1.4%. The carbon pool in the new
organic layer levelled on top of the clay was estimated to be app. 17.4 kg C m−2. The estimation was
based on an approximation that the topsoil was app. 30 cm deep and it composed of equal shares of
bark, woody materials and composted sludge. Furthermore, we utilized the measured densities and the
losses of ignition for each material. The acid (A) hydrolyzable, water (W) soluble, ethanol (E) soluble,
neither soluble or hydrolyzable (N), and humus (H) fractions of the different components were estimated
based on literature and personal discussion (Table 1).

The 30-year mean annual precipitation and temperature are 614 mm and 4.7 °C, respectively, at Lahti
Laune weather station situated 29 km from the site (Jokinen et al. (2021)).

Table 1: Estimated carbon pools, AWENH values, and diameters for the three different substartes
mixed on top of the clay soil before planting and sowing of the vegetation.

Parameter (unit) Bark Wood Sludge

C pool (kg m−2) 6.3 4.9 6.4

A (%) 48 67 62

W (%) 1.9 1.8 4.9

E (%) 7.8 0.3 2.3

N (%) 43 31 31

H (%) 0 0 0

Diameter (cm) 0.5–5 2–4 0

AWEN reference 1 2 3

1 Bark according to personal communication with Aleksi Lehtonen, 2020
2 Spruce wood according to personal communication with Aleksi Lehtonen, 2020
3 Composted sludge according to Heikkinen et al. (2021)

2 Measurement setup

The micrometeorological eddy covariance (EC) instrumentation included an enclosed IR gas analyser (LI-
7200, LI-COR Biosciences Inc., Lincoln, Nebraska, USA) to measure CO2 mixing ratio and a ultrasonic
anemometer (uSonic-3 Scientific, METEK GmbH, Elmshorn, Germany) to measure the wind speed
components and sonic temperature. The measurement height was 2.2 m and the the signals were recorded
at 10 Hz frequency. Since the measurement area covers only 1 ha, the EC tower was placed on the eastern
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side of the field, and EC data from the eastern wind sector were discarded (Fig. 1).

Figure 1: Measurement site captured by drone on 1 September 2020. The location of the eddy covariance
tower (red asterisk), the cardinal directions (white), approved wind directions for EC data (white), and
the three sample plots (yellow), each 100 m2 in size, are illustrated in the figure.

A wide range of supporting meteorological measurements were conducted. Air temperature was recorded
with Pt100 sensor (Nokeval Oy, Nokia, Finland) and with HMP110 probe (Humicap, Vaisala Oyj, Vantaa,
Finland) alongside relative humidity. The shortwave global radiation and the reflected solar radiation
were measured with two pyranometers (CMP11, Kipp & Zonen B.V., Delft, the Netherlands). Photo-
synthetically active radiation was recorded with PQS PAR sensor (Kipp & Zonen, OTT HydroMet B.V.,
Delft, Netherlands). Net radiometer (NR Lite2, Kipp & Zonen) sensor was used to determine the net
radiation. These measurements were recorded at 1.3 m height. The soil temperature profiles were cap-
tured on the surface and at the depths of 5 and 30 cm (Pt100 IKES sensors, Nokeval Oy). Soil moisture
was captured at depths of 10 and 30 cm (ML3 ThetaProbe sensors, Delta-T Devices Ltd., Cambridge,
UK). Precipitation was monitored by a weighing rain gauge (Pluvio2, OTT HydroMet GmbH, Kempten,
Germany) with a wind protection shield.

In addition to the EC method, manual chamber measurements of carbon fluxes were performed dur-
ing 2021–2022. Systematic chamber measurements were performed with an opaque static aluminium
chamber (area: 0.36 m2, height: 0.2 m) seven times on six different chamber base frames that were
installed on the study site, two in each of the three sample plots (Fig. 1). The CO2 concentrations
were measured with a gas analyser (LI-840A, LI-COR Biosciences Inc.). Measurements of soil tem-
perature (Pt100 IKES sensors, Nokeval Oy), soil moisture (ML3 ThetaProbe sensors, Delta-T Devices
Ltd.), and air temperature and humidity (BME280, Bosch Sensortec GmbH, Germany) were conducted
simultaneously with the chamber measurements.

3 Flux processing and gapfilling

We used a low measurement height (2.2 m) due to the limited size of the target area. The EC tower
was placed on the eastern side of the plot and CO2 flux data from wind directions from 9° to 176° were
excluded. To ensure turbulent conditions, we only accepted observations when wind speed was above
1.2 m s−1 and friction velocity exceeded 0.1 m s−1. In total we have 11083 half-hourly flux observa-
tions from the measurement period from 14:00 23 Jun 2020 to 6:30 29 Jun 2022. The storage flux was
calculated from CO2 concentrations at the flux measurement height with two different methods: using
the average concentrations from the preceding and succeeding half-hourly periods or alternatively using
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the 30-second averages in the beginning and in the end of the half-hourly flux observation. These two
methods gave very similar results. The storage flux component had very small (less than 1%) effect on
the CO2 balance. This is facilitated by the low measurement height and the roughness length, which was
on average 0.10 m. A concern with this kind of a rather small study area is that the flux footprint might
extend beyond the borders of the target area. To estimate the CO2 flux footprint, we used the model
by Kormann & Meixner (2001). The model estimates horizontal extent of the footprint using turbulent
parameters measured by the sonic anemometer. When taking an average of all accepted observations,
70% of the flux was generated within the study area, which is considered satisfactory.

The data were gap-filled using a machine learning method called extreme gradient boosting, which
is based on parallel boosted decision trees. The method was applied using the ‘xgboost’ Python pack-
age Chen & Guestrin (2016). Hyperparameters of the model were optimized using grid search and the
squared error was used as the loss function. The variables that were used to predict NEE were soil
temperature at -5cm, soil moisture deficit at -10cm, leaf area index, global radiation, air temperature
and relative humidity. The coefficient of determination (R2) and the mean squared error were evaluated
using 10-fold cross-validation, and the obtained values were 0.91±0.01 and 0.006±0.0007 mg CO2 m−2

m−1, respectively (Fig. 2).

Figure 2: Comparison of modelled and measured NEE.

Momentary total ecosystem respiration (TER) was calculated from the chamber measurements for each
day and closure with linear fitting function as follows,

TER =
dc

dt

MPV

RTA
, (1)

where dc
dt is the change in CO2 concentration over the chamber closure time (s−1), M is the molar mass

CO2 (44.01 g mol−1), P is air pressure (Pa), V is the chamber volume (m3), R is the universal gas
constant (8.31446 J mol−1 K−1), T is the mean temperature in the chamber during closure (K), and A
is the base area of the chamber (m2).

4 CO2 fluxes, energy budget and water exchange

The seasonal and diurnal variation of CO2 fluxes was analyzed from the processed data collected during
the 2-year observation period (Fig. 3). When the layer of mixed organic material was spread on the site
in June 2020, the sown grass (Festuca pratensis) had not yet sprouted and planted tree seedlings (height
app. 0.2 m) had very low projected LAI. Many of the seedlings wilted during a heatwave in June. The
site carbon exchange was mostly dominated by high soil respiration, with a mean net CO2 emission of
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0.68 mg m−2 s−1 in the summer (23.6.-31.8.2020) and 0.29 mg m−2 s−1 in the autumn (1.9.-30.11.2020).
As the photosynthetic production increased towards the end of the summer, a daytime net gas uptake
of -0.1 mg m−2 s−1 was observed during autumn 2020. Total ecosystem respiration (TER) had a mean
value of app. 0.1 mg m−2 s−1 in winter and spring 2021. Due to the easily decomposing soil and residues
of grass and other litter from the 2020 growing season, CO2 emission was strong during the night time
in the summer 2021. Despite the higher LAI and favourable growth conditions, the difference between
fluxes at midnight and at noon (0.5 mg m−2 s−1) was not much more than in the previous autumn. The
protracted drought during summer 2021 most likely reduced the development of vegetation. The average
wintertime (1.12.-29.2.2022) gas emission was 28% lower compared to the previous winter probably due
to the lower soil temperatures. In June 2022, a net CO2 uptake developed and soil efflux remained
moderate because the soil temperature had not yet reached the summer peak values.

Figure 3: Mean diurnal and seasonal variation of observed CO2 flux during 2020–2022. Negative and
positive flux values indicate that the site has acted as a sink or a source of atmospheric carbon, respec-
tively.

In the beginning of the measurement period in June 2020, the persistent heatwave induced the drying of
the soil surface. In the absence of vegetation and as the recently spread layer of soil material was very
porous and insulating, only the very top surface layer became notably dry. Therefore, in the absence of
latent heat flux, the soil surface reached very high temperatures during the daytime. On June 27, the
Bowen ratio (sensible heat flux divided by the latent heat flux) was 3.3 which is very high compared to
normal vegetated surfaces with a Bowen ratio closer to 1. The Bowen ratio was calculated as the 6-hour
average of the half-hourly turbulent flux values centered at noon. At daytime, the energy balance was
driven by solar radiation heating the dark surface which was balanced by cooling by turbulent sensible
heat flux and infrared radiation. Evaporation was only a minor component. During the heatwave in July
2021, when vegetation was more abundant, we observed Bowen ratios from 0.25 to 0.5 with evapotran-
spiration being the major energy balance component.

Water balance was monitored by measuring precipitation, evapotranspiration, (Fig. 4B) and soil mois-
ture at high temporal resolution in order to understand the evapotranspiration and possibly nutrient
rich soil water runoff. The observed cumulative precipitation was 474 mm from 23 June until the end of
2020, 584 mm for 2021, and 239 mm for the beginning of 2022 until 28 June 2022 while the cumulative
evapotranspiration for the same time periods was 158 mm, 251 mm, and 102 mm, respectively. A dry
period prevailed from May 25 to Jun 27, 2021 when cumulative precipitation amount was only 23 mm
but cumulative evapotranspiration 134 mm. This resulted in very low soil moisture values (less than
0.2 m3 m−3). The following August was very wet with a precipitation sum of 163mm. In the long
run, precipitation that exceeds evapotranspiration (P − ET in Fig. 4C) produces runoff water which is
exported from the area. In 2021, the total P −E difference was 333 mm generating 3300 m3 runoff water
from the 1 ha area. During the latter half of year 2020, precipitation excess was 316 mm and during the
first half of 2022, it was 137 mm.
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Soil temperature (Fig. 4D) is the most important parameter for soil respiration and air temperature
is very important for plant growth and plant respiration. In summer 2021, there were 33 measurement
days when air temperature exceeded 25°C, with the highest air temperature of 33.3°C (July 14). Even
though the freezing of soil is rare in southern parts of Finland, the soil was frozen down to 10 cm depth
in December 2021 for one month. Furthermore, the frozen conditions lasted until March in the top 5 cm
soil layer.

Figure 4: A time series of A) daily mean net ecosystem exchange (NEE) with shaded areas representing
the 25th/75th percentiles, B) cumulative precipitation amount and evapotranspiration by micrometeo-
rological method, C) difference between weekly sums of precipitation and evapotranspiration, and D)
daily mean soil temperature (5 cm). Negative and positive NEE values indicate that the site has acted
as a sink or a source of atmospheric carbon, respectively.

The CO2 fluxes from the systematic manual opaque chamber measurements showed similar seasonal
pattern wit the nocturnal EC fluxes on the site (Fig. 5). The gas fluxes were averaged separately
over the three bare and three vegetated chamber measurements on each measurement day. As the EC
observations and chamber measurements were taken at different times of a day, they are not directly
comparable with each other due to the diurnal variation of soil temperature which strongly affects the
soil respiration. However, some distinct behavior can be seen from the results. In the early summer in
2021 from May to June, both the bare and vegetated means display fluxes of similar magnitude (0.3 g
m−2 s−1 and 0.7 g m−2 s−1 for May and June). During the later summer months the vegetated chambers
produced higher respiration values with the maximum difference of 0.57 g m−2 s−1 between the bare and
vegetated chambers on Aug 9 2021. On average, the measured fluxes were 39 % greater in the vegetated
chambers than in the bare chambers. Overall, the averaged bare chamber measurements of CO2 fluxes
agreed better with the EC observations in 2021.
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Figure 5: Ecosystem respiration compared between EC night-time (22:00-03:00) CO2 flux observations
and manual chamber measurements collected in the morning. Chamber B values are the averages of the
three chambers with bare soil in May 2021 and chamber V values are the averages of the three chambers
with vegetation (B=bare, V=vegetated). The error bars represent the standard deviation.

5 Vegetation

Leaf area index was measured with LAI-2200C (LI-COR Biosciences Inc.). Leaf Area Index is one-sided
leaf surface area per ground surface area. On 1 September and 15 October 2020, LAI was measured on
a straight line towards west (white line in Fig. 1) from the EC tower at every two meters, 22 times in
total. In addition, LAI was measured 37 times in various parts of the area on 1 September 2020. On
15 October 2020, three sample plots (3 × 100 m2) were established on the site and LAI was measured
within these plot areas. In 2021-2022 LAI was measured along the borders of the three plot areas, on
the straight line west from the EC tower, and also within the six chamber base frames.

The site was monitored also using remote sensing imagery from the Copernicus Sentinel-2 satellites
during 2020-2022. Atmospherically corrected Level-2A (L2A) Sentinel-2 multispectral data were re-
trieved using the GEE (earthengine.google.com) cloud data platform. The scene classification band
available in L2A products is used to filter away image acquisition dates during which the field is covered
by snow, cloud, or cloud shadow. From the Sentinel-2 data, we calculated the green leaf area index (LAI)
estimated using the ESA Sentinel Application Platform (SNAP) Biophysical Processor neural network
algorithm (Weiss & Baret (2016), github.com/ollinevalainen/satellitetools). The uncertainty calculations
are described in detail by Nevalainen et al. (2022).

The LAI derived from the Sentinel-2 images experienced seasonal and year-to-year variation in the
study site and in a reference agricultural grain field that was located near the site (Fig. 6). In 2019,
a year before the afforestation measures and the measurement campaign begun, the largest LAI values
were observed in July with a monthly average LAI of 0.98 m2 m−2. In 2020, the development of plant
activity was delayed due to spreading of the layer of organic material and planting. Thus, LAI was under
0.5 m2 m−2 in June 2020 and reached the largest values (2–2.5 m2 m−2) only in September–October. In
2021, the largest LAI values (2.5–3.0 m2 m−2) were observed from June to July. The dry and difficult
growing season in 2021 is distinguishable from the very low LAI observations in the nearby agricultural
field. The ground level LI-COR LAI measurements produced similar results with the remotely sensed
observations. On Sep 1 2020, the average measured LAI was 1.4 m2 m−2 while the remotely sensed LAI
was 2.2 m2 m−2. On Oct 10 2020, the similar LAI values were 2.8 m2 m−2 and 2.3 m2 m−2, respectively.
During summer 2021, the remotely sensed LAI observations were lower on average than the systematic
surface observations.
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Figure 6: Monthly average leaf area index (LAI) calculated from data retrieved from ESA Sentinel-2
satellites on the study site (blue) and on an agricultural field nearby (green).

DJI Mavic 2 drone (Mavic 2 Pro, SZ DJI Technology Co., Ltd., Shenzhen, China) was used to collect
aerial images (e.g. Fig. 1) at the height of 45 m on 1 September 2020, 8 June 2021, and 7 September 2021.
OpenDroneMap (WebODM, version 1.9.2) processing software was used to merge the images. Based on
the resulting images, it was possible to divide the image pixels into green and non-vegetated parts (using
excess green vegetation index ExG=2G-R-B) and thus determine the overall vegetation coverage on the
site.

Manual chamber base frames were photographed from above each time the manual chamber measure-
ments were conducted. The photos were first cropped to match the basal area of the base frame and
then processed with Canopeo (Patrignani & Ochsner, 2015) to determine the proportion of green area
within each base frame (Table 2). Canopeo was used with the default settings. Base frames were sit-
uated so that half of them (V1-V3) had vegetation inside them and half of them were bare (B1-B3) in
May 2021. Eventually, vegetation developed also within the initially bare base frames and they could
no longer be distinguished from the others in that regard in June 2022 (Table 2). The development of
green area showed similar seasonal and annual variations than the surface level and remotely sensed LAI
observations.

Table 2: Proportion (%) of green area inside the six chamber base frames. In the beginning of the
observation period in May 2021, base frames B1, B2, and B3 had no vegetation (B=bare, V=vegetated).

Green area (%)

Date B1 V1 B2 V2 B3 V3

05/2021 0.1 0 0 16 0 15

06/2021 7 3 3 77 1 93

07/2021 35 16 23 75 2 80

08/2021 50 69 48 57 12 25

09/2021 39 91 74 90 23 36

06/2022 90 85 90 80 88 77

07/2022 92 89 96 84 67 72

All tree saplings within each of the sample plots (3 × 100 m2) were identified and their heights were
measured first in May 2021 and again in July 2022. The results were then upscaled based on the total
area of the plots (300 m2). In May 2021, the densities of spruces and birches were 167 and 267 ha−1

with mean height of 22 and 41 cm, respectively. In July 2022, the densities of spruces and birches were
800 and 267 ha−1 with mean height of 45 and 142 cm, respectively.
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6 JSBACH model setup

The site level simulations were executed with the land surface model JSBACH (Kaminski et al. (2013)),
using a version that includes forest management. The soil carbon submodel Yasso (Tuomi et al. (2009))
was utilized to estimate the decomposition of soil organic carbon (SOC).

The JSBACH model was forced with hourly ERA5-Land reanalysis data (Muñoz Sabater (2019)) and
ERA5 single level data (Hersbach et al. (2018)) from the grid point nearest to the study site. The
simulation spanned over two years from June 2020 to June 2022. The ERA5 forcing data agreed well
with the in-situ observed data over the study period (Figure 7).

Figure 7: Daily air temperatures compared between ERA5 forcing data and in-situ measurements.

The spin-up and future runs were both forced with EURO-CORDEX data (Jacob et al. (2014)) on the
EUR-44 domain, with a spatial resolution of ca. 50 km (0.44 ◦). The EURO-CORDEX data is downscaled
and bias corrected, in this case based on the global driver model CanESM2 under RCP4.5. The model
was run with daily EURO-CORDEX from the grid point closest to the study site. Data is available from
1951 to 2100. Additional data was generated for the spin-up by randomly repeating data for 1951 to 1980.

For the study period 2020–2022 the JSBACH model was set to use C3 grass as the plant functional
type (PFT), which described the vegetation at the measurement site at the time. The model default
parameters were adjusted to represent the conditions at the study site. The maximum leaf area index
parameter was set to 4.0 to reproduce the obtained Sentinel-2 satellite LAI observations. Maximum
vegetated fraction was set to 0.82 in accordance with the calculated vegetation coverage from the drone
imagery. The soil at the site is clay, however, the organic matter spread on top has a very different
hydraulic properties. Therefore we used parameter values for field capacity and wilting point based on
values representing medium soil texture, which were further tuned using the soil moisture data. The
modified JSBACH parameters are listed in Table 3.

Table 3: Parameter settings for JSBACH main simulations.

Parameter (unit)

Maximum vegetated fraction 0.82

Maximum LAI, grass (m2 m−2) 4.0

Field capacity (%) 40

Wilting point (%) 25

The initial state of the model was derived with a 260-year spin-up run. The spin-up consisted of model
runs of 95, 95, and 40 years with vegetation clear-cuts at the end of each period. During the final 30-year
spin-up period the leaf area index was limited to zero, in order to bring the model to a new steady state
representing the non-vegetated site conditions. The state of the below ground litter pools at the end of
the simulation was taken as the initial state for the main run. The above ground litter pools (Table 1)
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were initialized at the start of the main run. The bark and woody materials were allocated to the woody
AG litter pool whereas sludge was allocated to the green AG litter pool.

A 30-year period was chosen for the future simulations and the JSBACH model was run separately
for grass, birch, and spruce vegetation types. In the model PFT setup, these vegetation types were
represented by C3 grass, extra-tropical deciduous trees, and extra-tropical evergreen trees, respectively.
The initial stem number was 13360 trees ha−1 for the reference birch and spruce runs. For the site setup
runs, the initial stem numbers were 267 trees ha−1 (birch) and 800 trees ha−1 (spruce) which were in
accordance with the measured densities of the planted birch and spruce seedlings. The given vegeta-
tion type was planted in the beginning of each future run and then left to grow for 30 years without
any additional disturbances. Then, the annual site CO2 balance (Fig. 2 in the main publication) was
estimated by assuming that the fraction of grass in the area would decrease linearly from 90% to 25%,
the fraction of spruce would increase from 5% to 50%, and the fraction of birch would increase from 5%
to 25 % in the 30-year time interval. The net ecosystem exchange was calculated as follows: the net
primary production (NPP) was calculated as a sum of the NPPs from the spruce model run, birch model
run, and the partial (linearly decreasing) grass model run. The site soil respiration was calculated as the
weighted average of the grass, birch, and spruce model runs by weighting the proportions as described
above. Finally, the estimated site future carbon balance was compared to the reference runs where the
vegetation was only grass, dense birch, or dense spruce forest or in a case that there was no vegetation.
The non–vegetated future scenario was run with the maximum LAI value set to 0.1.

There are a number of factors contributing to the uncertainty of the carbon sequestrations estimates.
Modeling the soil water balance is challenging due to the vertically varying hydraulic properties of the
soil layers, clay and added organic material. There is also some uncertainty in assigning the organic
material on site to corresponding carbon pools in the JSBACH (Yasso) model. Some of the carbon pools
are decomposing very easily and there is no corresponding carbon pool in the model, which is seen in
the beginning of the time series as a discrepancy between observed and simulated ecosystem exchange
of CO2 in Fig 1. in the main publication.
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